OFFSET
1,4
COMMENTS
By Fermat's little theorem, if p > 2 is prime, then 2^(p-1) == 1 (mod p), thus a(p)=0. If a(n)=0, then n may be only pseudoprime, as for n = 341 = 11*31 [F. Sarrus, 1820].
See A001567 for the list of all pseudoprimes to base 2, i.e., composite numbers which have a(n) = 0, also called Sarrus or Poulet numbers. Carmichael numbers A002997 are pseudoprimes to all (coprime) bases b >= 2. - M. F. Hasler, Mar 13 2020
LINKS
T. D. Noe, Table of n, a(n) for n = 1..2048
Wikipedia, Fermat's little theorem
FORMULA
a(n) = M(n-1) - n floor( M(n-1)/n ) = M(n-1) - max{ k in nZ | k <= M(n-1) } where M(k)=2^k-1.
EXAMPLE
a(1)=0 since any integer == 0 (mod 1);
a(2)=1 since 2^1-1 == 1 (mod 2),
a(3)=0 since 3 is a prime > 2,
a(4)=3 since 2^3-1 = 7 == 3 (mod 4);
a(341)=0 since 341=11*31 is a Sarrus number.
MATHEMATICA
Table[Mod[2^(n-1)-1, n], {n, 100}] (* Harvey P. Dale, Dec 22 2012 *)
PROG
(PARI) a(n)=(1<<(n-1)-1)%n
(PARI) apply( {A128311(n)=lift(Mod(2, n)^(n-1)-1)}, [1..99]) \\ Much more efficient when n becomes very large. - M. F. Hasler, Mar 13 2020
(Python)
def A128311(n): return (pow(2, n-1, n)-1)%n # Chai Wah Wu, Jul 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 04 2007
STATUS
approved