OFFSET
0,2
COMMENTS
The number of walks of length n with step set {NE,SE,NW} confined to the quarter plane is asymptotic to Alpha*(3^n) + O(8^(n/2)), where Alpha is a constant given by 1-2SUM[n>=0]((-1)^n)/F(2n)F(2n+2) ~ 0.1731788836... [Corollary 2.7 of Mishna reference, p. 9].
Mishna and Rechnitzer use nonstandard indices for Fibonacci numbers. - R. J. Mathar, Nov 04 2007
LINKS
Marni Mishna and Andrew Rechnitzer, Two Non-holonomic Lattice Walks in the Quarter Plane, arXiv:math/0701800
FORMULA
1-2*SUM[n>=0]((-1)^n)/F(2n)F(2n+2) where F(n) is the Fibonacci sequence. 1-2*SUM[n>=0]((-1)^n)/A000045(2n+1)*A000045(2n+3). - R. J. Mathar, Nov 04 2007
EXAMPLE
0.173178883...
MAPLE
Digits := 100 : F := proc(n) combinat[fibonacci](n+1) ; end: s := 0 : for n from 0 do s := s+(-1)^n/F(2*n)/F(2*n+2) ; print(1.-2.*s) ; od: # R. J. Mathar, Nov 04 2007
MATHEMATICA
digits = 100; rd[k_] := rd[k] = RealDigits[1 - 2*NSum[(-1)^n/(Fibonacci[2*n + 1]*Fibonacci[2*n + 3]), {n, 0, 2^k}, WorkingPrecision -> digits + 10]][[1]]; rd[k = 4]; While[rd[k] != rd[k - 1], k++]; A125681 = rd[k] (* Jean-François Alcover, Oct 30 2012 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Jan 30 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 04 2007
STATUS
approved