login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125681
Decimal expansion of a non-holonomic random walk constant.
1
1, 7, 3, 1, 7, 8, 8, 8, 3, 5, 5, 1, 2, 2, 0, 6, 3, 0, 4, 6, 6, 2, 6, 3, 4, 4, 9, 0, 5, 7, 2, 6, 5, 9, 7, 6, 8, 4, 3, 3, 5, 4, 7, 0, 2, 2, 6, 3, 7, 2, 8, 7, 4, 9, 0, 8, 9, 1, 5, 7, 4, 5, 4, 9, 0, 0, 3, 4, 7, 1, 7, 0, 1, 2, 6, 8, 0, 5, 0, 2, 8, 2, 3, 3, 7, 7, 5, 7, 2, 6, 9
OFFSET
0,2
COMMENTS
The number of walks of length n with step set {NE,SE,NW} confined to the quarter plane is asymptotic to Alpha*(3^n) + O(8^(n/2)), where Alpha is a constant given by 1-2SUM[n>=0]((-1)^n)/F(2n)F(2n+2) ~ 0.1731788836... [Corollary 2.7 of Mishna reference, p. 9].
Mishna and Rechnitzer use nonstandard indices for Fibonacci numbers. - R. J. Mathar, Nov 04 2007
LINKS
Marni Mishna and Andrew Rechnitzer, Two Non-holonomic Lattice Walks in the Quarter Plane, arXiv:math/0701800
FORMULA
1-2*SUM[n>=0]((-1)^n)/F(2n)F(2n+2) where F(n) is the Fibonacci sequence. 1-2*SUM[n>=0]((-1)^n)/A000045(2n+1)*A000045(2n+3). - R. J. Mathar, Nov 04 2007
EXAMPLE
0.173178883...
MAPLE
Digits := 100 : F := proc(n) combinat[fibonacci](n+1) ; end: s := 0 : for n from 0 do s := s+(-1)^n/F(2*n)/F(2*n+2) ; print(1.-2.*s) ; od: # R. J. Mathar, Nov 04 2007
MATHEMATICA
digits = 100; rd[k_] := rd[k] = RealDigits[1 - 2*NSum[(-1)^n/(Fibonacci[2*n + 1]*Fibonacci[2*n + 3]), {n, 0, 2^k}, WorkingPrecision -> digits + 10]][[1]]; rd[k = 4]; While[rd[k] != rd[k - 1], k++]; A125681 = rd[k] (* Jean-François Alcover, Oct 30 2012 *)
CROSSREFS
Sequence in context: A178149 A318669 A110636 * A021899 A176435 A133722
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Jan 30 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 04 2007
STATUS
approved