login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of a non-holonomic random walk constant.
1

%I #12 Aug 12 2015 21:06:06

%S 1,7,3,1,7,8,8,8,3,5,5,1,2,2,0,6,3,0,4,6,6,2,6,3,4,4,9,0,5,7,2,6,5,9,

%T 7,6,8,4,3,3,5,4,7,0,2,2,6,3,7,2,8,7,4,9,0,8,9,1,5,7,4,5,4,9,0,0,3,4,

%U 7,1,7,0,1,2,6,8,0,5,0,2,8,2,3,3,7,7,5,7,2,6,9

%N Decimal expansion of a non-holonomic random walk constant.

%C The number of walks of length n with step set {NE,SE,NW} confined to the quarter plane is asymptotic to Alpha*(3^n) + O(8^(n/2)), where Alpha is a constant given by 1-2SUM[n>=0]((-1)^n)/F(2n)F(2n+2) ~ 0.1731788836... [Corollary 2.7 of Mishna reference, p. 9].

%C Mishna and Rechnitzer use nonstandard indices for Fibonacci numbers. - _R. J. Mathar_, Nov 04 2007

%H Marni Mishna and Andrew Rechnitzer, <a href="http://arXiv.org/abs/math/0701800">Two Non-holonomic Lattice Walks in the Quarter Plane</a>, arXiv:math/0701800

%F 1-2*SUM[n>=0]((-1)^n)/F(2n)F(2n+2) where F(n) is the Fibonacci sequence. 1-2*SUM[n>=0]((-1)^n)/A000045(2n+1)*A000045(2n+3). - _R. J. Mathar_, Nov 04 2007

%e 0.173178883...

%p Digits := 100 : F := proc(n) combinat[fibonacci](n+1) ; end: s := 0 : for n from 0 do s := s+(-1)^n/F(2*n)/F(2*n+2) ; print(1.-2.*s) ; od: # _R. J. Mathar_, Nov 04 2007

%t digits = 100; rd[k_] := rd[k] = RealDigits[1 - 2*NSum[(-1)^n/(Fibonacci[2*n + 1]*Fibonacci[2*n + 3]), {n, 0, 2^k}, WorkingPrecision -> digits + 10]][[1]]; rd[k = 4]; While[rd[k] != rd[k - 1], k++]; A125681 = rd[k] (* _Jean-François Alcover_, Oct 30 2012 *)

%K cons,nonn

%O 0,2

%A _Jonathan Vos Post_, Jan 30 2007

%E Corrected and extended by _R. J. Mathar_, Nov 04 2007