login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A125683
Numerator of Sum_{k=1..n} (-1)^(k+1) * 1/(k*(k+1)).
3
1, 1, 5, 11, 2, 79, 331, 479, 493, 5297, 2701, 69071, 70061, 69203, 55963, 471181, 158395, 8960447, 45108541, 44831407, 45083347, 1031626241, 518238043, 5160071143, 5180664331, 15484789693, 15537907043, 64166447971, 64357670431
OFFSET
1,3
COMMENTS
Numbers n such that a(n) is prime are listed in A125684(n) = {3,4,5,6,7,8,10,13,14,18,21,22,26,27,28,32,33,35,51,54,58,67,76,89,100,...}.
Corresponding primes are listed in A125685(n) = a(A125684(n)) = {5,11,2,79,331,479,5297,70061,69203,8960447,45083347,...}.
LINKS
FORMULA
a(n) = numerator of Sum_{k=1..n} (-1)^(k+1) * 1/(k*(k+1)).
MAPLE
map(numer, ListTools:-PartialSums([seq((-1)^(k+1)/k/(k+1), k=1..40)])); # Robert Israel, Apr 13 2021
MATHEMATICA
Table[Numerator[Sum[(-1)^(k+1)*1/(k(k+1)), {k, 1, n}]], {n, 1, 40}]
PROG
(PARI) a(n) = numerator(sum(k=1, n, (-1)^(k+1) * 1/(k*(k+1)))); \\ Michel Marcus, Apr 13 2021
CROSSREFS
Sequence in context: A201457 A111118 A159199 * A125685 A098147 A100298
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 30 2006
STATUS
approved