OFFSET
1,7
FORMULA
Conjectures from Colin Barker, Apr 03 2020: (Start)
G.f.: x^3*(1 + x + x^2 - 4*x^3 + 2*x^4 - 2*x^5 + 6*x^6 + x^8 - 4*x^9 + x^12) / ((1 - x)^5*(1 + x + x^2)^5).
a(n) = 5*a(n-3) - 10*a(n-6) + 10*a(n-9) - 5*a(n-12) + a(n-15) for n>14.
(End)
MAPLE
MATHEMATICA
A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl + 1, k++, s = Sum[Binomial[Binomial[l, k + 1] + i - 1, i]*t^(i*k), {i, 0, Ceiling[ cl/k]}]; g = g*s]; SeriesCoefficient[g, {t, 0, cl}]];
a[m_, n_] := A133713[Ceiling[m/n], n*Ceiling[m/n] - m];
Table[a[m, 3], {m, 1, 55}] (* Jean-François Alcover, Apr 03 2020, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 30 2007
STATUS
approved