OFFSET
1,2
COMMENTS
Original definition:
SENSigma(n) = (-1)^((Sum_i r_i)+Omega(n))*Sum_{d|n} (-1)^((Sum_j Max(r_j))+Omega(d))*d =Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^(r_i+1) where n=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing n.
SEN stands for Signed by Exponents of prime factors and Number of prime factors.
By "Max(r_j)" I mean the following: If d|m, d = p^e*q^f, m = p^x*q^y*r^z then Max(e)=x, Max(f)=y.
Here is another version of the definition. Let n=Product_i p_i^e_i, PREX_{p}(n)=e_k, p=p_k. Example: n = 2^4*3^2*5, PREX_{2}(n)=4. Then SENSigma(m) = (-1)^((Sum_i r_i) + Omega(m))*Sum_{d|m} (-1)^((Sum_j PREX_{p_j}(m)) + Omega(d))*d = Product_i (Sum_{1 <= s_i <= r_i} p_i^s_i) + (-1)^(r_i+1) where m = Product_i p_i^r_i, d = Product_j p_j^r_j.
The function is not completely multiplicative: If p is a prime, a(p) = p+1 but a(p^2) = p + p^2 - 1. - R. J. Mathar, Nov 20 2010
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
SENSigma(n) = Product_i (p_i^(r_i+1) - p_i)/(p_i-1) + (-1)^(r_i+1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(4)/2) * Product_{p prime} (1 + 1/p^2 - 2/p^4 + 2/p^5) = 0.76715211405... . - Amiram Eldar, Nov 30 2022
EXAMPLE
If n=240, d=12 then 2^max(r_j) = 2^max(2) = 2^4, 3^max(r_j) = 3^max(1) = 3^1. SENSigma(240) = (-1+2+4+8+16)*(1+3)*(1+5).
MAPLE
A125139 := proc(n) local ifs, i, a, r, p ; ifs := ifactors(n)[2] ; a := 1 ; if n > 1 then for i from 1 to nops(ifs) do r := op(2, op(i, ifs)) ; p := op(1, op(i, ifs)) ; a := a*(p*(1-p^r)/(1-p)-(-1)^r) ; od ; fi ; RETURN(a) ; end: for n from 1 to 80 do printf("%d, ", A125139(n)) ; od ; # R. J. Mathar, May 18 2007
MATHEMATICA
f[p_, e_] := p*(p^e-1)/(p-1) - (-1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
PROG
(PARI) A125139(n)={ prod( i=1, #n=factor(n)~, my( r=n[2, i], p=n[1, i]); p*(p^r-1)/(p-1)-(-1)^r ) }
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Yasutoshi Kohmoto, Jan 12 2007, Jan 29 2007
EXTENSIONS
More terms from R. J. Mathar, May 18 2007
STATUS
approved