login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125139
SENSigma: Multiplicative with a(p^e) = p*(p^e-1)/(p-1) - (-1)^e.
1
1, 3, 4, 5, 6, 12, 8, 15, 11, 18, 12, 20, 14, 24, 24, 29, 18, 33, 20, 30, 32, 36, 24, 60, 29, 42, 40, 40, 30, 72, 32, 63, 48, 54, 48, 55, 38, 60, 56, 90, 42, 96, 44, 60, 66, 72, 48, 116, 55, 87, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 88, 125, 84, 144, 68, 90, 96
OFFSET
1,2
COMMENTS
Original definition:
SENSigma(n) = (-1)^((Sum_i r_i)+Omega(n))*Sum_{d|n} (-1)^((Sum_j Max(r_j))+Omega(d))*d =Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^(r_i+1) where n=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing n.
SEN stands for Signed by Exponents of prime factors and Number of prime factors.
By "Max(r_j)" I mean the following: If d|m, d = p^e*q^f, m = p^x*q^y*r^z then Max(e)=x, Max(f)=y.
Here is another version of the definition. Let n=Product_i p_i^e_i, PREX_{p}(n)=e_k, p=p_k. Example: n = 2^4*3^2*5, PREX_{2}(n)=4. Then SENSigma(m) = (-1)^((Sum_i r_i) + Omega(m))*Sum_{d|m} (-1)^((Sum_j PREX_{p_j}(m)) + Omega(d))*d = Product_i (Sum_{1 <= s_i <= r_i} p_i^s_i) + (-1)^(r_i+1) where m = Product_i p_i^r_i, d = Product_j p_j^r_j.
The function is not completely multiplicative: If p is a prime, a(p) = p+1 but a(p^2) = p + p^2 - 1. - R. J. Mathar, Nov 20 2010
LINKS
FORMULA
SENSigma(n) = Product_i (p_i^(r_i+1) - p_i)/(p_i-1) + (-1)^(r_i+1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(4)/2) * Product_{p prime} (1 + 1/p^2 - 2/p^4 + 2/p^5) = 0.76715211405... . - Amiram Eldar, Nov 30 2022
EXAMPLE
If n=240, d=12 then 2^max(r_j) = 2^max(2) = 2^4, 3^max(r_j) = 3^max(1) = 3^1. SENSigma(240) = (-1+2+4+8+16)*(1+3)*(1+5).
MAPLE
A125139 := proc(n) local ifs, i, a, r, p ; ifs := ifactors(n)[2] ; a := 1 ; if n > 1 then for i from 1 to nops(ifs) do r := op(2, op(i, ifs)) ; p := op(1, op(i, ifs)) ; a := a*(p*(1-p^r)/(1-p)-(-1)^r) ; od ; fi ; RETURN(a) ; end: for n from 1 to 80 do printf("%d, ", A125139(n)) ; od ; # R. J. Mathar, May 18 2007
MATHEMATICA
f[p_, e_] := p*(p^e-1)/(p-1) - (-1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
PROG
(PARI) A125139(n)={ prod( i=1, #n=factor(n)~, my( r=n[2, i], p=n[1, i]); p*(p^r-1)/(p-1)-(-1)^r ) }
CROSSREFS
Cf. A013662.
Sequence in context: A188999 A186644 A337177 * A369762 A107224 A026493
KEYWORD
nonn,mult
AUTHOR
Yasutoshi Kohmoto, Jan 12 2007, Jan 29 2007
EXTENSIONS
More terms from R. J. Mathar, May 18 2007
STATUS
approved