login
A125141
a(1) = 2; for n>1, a(n)=SENSigma(a(n-1)), where SENSigma(m) = (-1)^((Sum_i r_i)+Omega(m))*Sum_{d|m} (-1)^((Sum_j Max(r_j))+Omega(d))*d = Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^(r_i+1) if m=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing m.
3
2, 3, 4, 5, 6, 12, 20, 30, 72, 165, 288, 693, 1056, 3024, 9280, 22500, 42845, 60480, 240000, 794580, 1814400, 7040040, 26352000, 98654400, 321552000, 1260230400, 5311834416, 17570520000, 75087810000, 325180275840, 1526817600000
OFFSET
1,1
COMMENTS
By "Max(r_j)" is meant the following: if d|m, d=p^e*q^f, m=p^x*q^y*r^z then Max(e)=x, Max(f)=y.
MAPLE
SENSigma := proc(n) local ifs, i, a, r, p ; ifs := ifactors(n)[2] ; a := 1 ; for i from 1 to nops(ifs) do r := op(2, op(i, ifs)) ; p := op(1, op(i, ifs)) ; a := a*(p*(1-p^r)/(1-p)-(-1)^r) ; od ; RETURN(a) ; end: A125141 := proc(nmax) local a ; a := [2] ; while nops(a)< nmax do a := [op(a), SENSigma(op(-1, a))] ; od ; RETURN(a) ; end: A125141(40) ; # R. J. Mathar, May 18 2007
MATHEMATICA
SENSigma[n_] := Module[{Ifs, i, a, r, p }, Ifs = FactorInteger[n]; a = 1; For[i = 1, i <= Length[Ifs], i++, r = Ifs[[i, 2]]; p = Ifs[[i, 1]]; a = a(p(1 - p^r)/(1 - p) - (-1)^r)]; Return[a]];
A125141[nmax_] := Module[{a}, a = {2}; While[Length[a] < nmax, a = Append[a, SENSigma[a[[-1]]]]]; Return[a]];
A125141[40] (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Jan 12 2007
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 14 2007
More terms from R. J. Mathar, May 18 2007
STATUS
approved