login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125142
a(n) = smallest k such that SEPSigma^{k}(n)=1, or -1 if no such k exists. Here SEPSigma(m) = (-1)^(Sum_i r_i)*Sum_{d|m} (-1)^(Sum_j Max(r_j))*d =Product_i (Sum_{1<=s_i<=r_i} p_i^s_i)+(-1)^r_i where m=Product_i p_i^r_i, d=Product_j p_j^r_j, p_j^max(r_j) is the largest power of p_j dividing m.
2
0, 1, 2, 4, 5, 2, 3, 6, 6, 5, 6, 4, 5, 3, 7, 9, 10, 6, 7, 7, 5, 6, 7, 6, 9, 5, 8, 6, 7, 7, 8, 11, 8, 10, 7, -1, -1, 7, 7, -1, -1, 5, 6, 8, -1, 7, 8, 9, -1, 9, 12, -1, -1, 8, -1, 8, -1, 7, 8, 9, 10, 8, 8, 10, 10, 8, 9, 12, 9, 7, 8, -1, -1, -1, 9, 9, 10, 7, 8, 12, -1, -1, -1, -1, 11, 6, 9, 11, 12, -1
OFFSET
1,3
COMMENTS
By "Max(r_j)" is meant the following: if d|m, d=p^e*q^f, m=p^x*q^y*r^z then Max(e)=x, Max(f)=y.
For n=36, no k exists which matches the definition since the iteration reaches a cycle that toggles between 168 and 156 ad infinitum: 36->91->72->169->183->120->104->156->168->156-> etc. In the same fashion, no solutions exist for n=37,40,41,45,49,52,53,... - R. J. Mathar, Jun 07 2007
EXAMPLE
SEPSigma^{5}(5)=1, so a(5)=5: 5 -> 4 -> 7 -> 6 -> 2 -> 1
MAPLE
A125140 := proc(n) local ifs, i, a, r, p ; ifs := ifactors(n)[2] ; a := 1 ; for i from 1 to nops(ifs) do r := op(2, op(i, ifs)) ; p := op(1, op(i, ifs)) ; a := a*(p*(1-p^r)/(1-p)+(-1)^r) ; od ; RETURN(a) ; end: A125142 := proc(n) local a, nsep; nsep := n ; a :=0 ; while nsep <> 1 do a := a+1 ; nsep := A125140(nsep) ; od ; RETURN(a) ; end: for n from 1 to 80 do printf("%d, ", A125142(n)) ; od ; # R. J. Mathar, Jun 07 2007
CROSSREFS
KEYWORD
sign
AUTHOR
Yasutoshi Kohmoto, Jan 12 2007, Jan 29 2007
EXTENSIONS
Edited by N. J. A. Sloane at the suggestions of Andrew S. Plewe and R. J. Mathar, May 14 2007, Jun 10 2007
More terms from R. J. Mathar, Jun 07 2007
More terms from R. J. Mathar, Oct 20 2009
STATUS
approved