login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125136
Triangle read by rows in which row n gives list of prime factors of p^p + 1 where p = prime(n).
5
5, 2, 2, 7, 2, 3, 521, 2, 2, 2, 113, 911, 2, 2, 3, 23, 89, 199, 58367, 2, 7, 13417, 20333, 79301, 2, 3, 3, 45957792327018709121, 2, 2, 5, 108301, 1049219, 870542161121, 2, 2, 2, 3, 47, 139, 1013, 1641281, 52626071, 1522029233, 2, 3, 5, 233, 6864997
OFFSET
1,1
COMMENTS
Product over the n-th row of the table is A051674(n) + 1. The number of elements in the n-th row is A115973(n). - R. J. Mathar, Jan 22 2007
(p + 1) divides p^p + 1 for odd prime p. - Alexander Adamchuk, Jan 22 2007
EXAMPLE
Rows read
5;
2, 2, 7;
2, 3, 521;
2, 2, 2, 113, 911;
2, 2, 3, 23, 89, 199, 58367;
2, 7, 13417, 20333, 79301;
2, 3, 3, 45957792327018709121;
2, 2, 5, 108301, 1049219, 870542161121;
2, 2, 2, 3, 47, 139, 1013, 1641281, 52626071, 1522029233;
2, 3, 5, 233, 6864997, 9487923853, 5639663878716545087233;
2, 2, 2, 2, 2, 373, 1613, 62869, 145577, 35789156484227, 2706690202468649;
etc.
MAPLE
pfs := proc(n) local ifs, a, e, b ; ifs := ifactors(n)[2] ; a := [] ; for b from 1 to nops(ifs) do for e from 1 to op(2, op(b, ifs)) do a := [op(a), op(1, op(b, ifs))] ; od ; od ; RETURN(a) ; end; A125136 := proc(nmax) local a, p, n, pp ; a := [] ; p := 2 ; while nops(a) < nmax do a := [op(a), op(pfs(p^p+1))] ; p := nextprime(p) ; od ; RETURN(a) ; end; A125136(40) ; # R. J. Mathar, Jan 22 2007
MATHEMATICA
lpf[n_]:=Flatten[Table[#[[1]], #[[2]]]&/@FactorInteger[n]]; lpf/@(#^#+1&/@ Prime[Range[10]])//Flatten (* Harvey P. Dale, Oct 18 2020 *)
CROSSREFS
Cf. A007571 = largest factor of n^n + 1.
Sequence in context: A259649 A217868 A153842 * A021989 A201421 A200645
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jan 21 2007
EXTENSIONS
More terms from Alexander Adamchuk and R. J. Mathar, Jan 22 2007
STATUS
approved