The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124869 Numerator of real part of (2*omega)^(-n) where omega = (-1 + i*3)/ 2. 4
 1, -1, -2, 13, 7, -79, 11, 307, -527, -481, 779, -3827, -11753, 42641, 4031, -245453, 164833, 897599, -430441, -1044467, 9653287, -14084239, -8545549, 138785587, 32125393, -758178721, 149387939, 2595790093, -5583548873, -1811852719 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equivalently: numerator of real part of (omega)^(-n) where omega = -1 + i*3. - Harvey P. Dale, Sep 14 2013 LINKS FORMULA a(n) = numerator( Re(1/(-1 + i*3)^n) ). 1/(-1 + i*3)^n = A124869(n)/ A124870(n) + i*A124871(n)/A124872(n). G.f.:(10+x)/(10+2*x+x^2) = 1-1/10*x-2/25*x^2+13/500*x^3+7/2500*x^4-79/25000*x^5+... . - Vladeta Jovovic, Oct 08 2007 Conjectures from Colin Barker, Jul 16 2019: (Start) G.f.: (1 - x - 2*x^2 + 13*x^3 - 7*x^4 - 65*x^5 + 39*x^6 + 125*x^7 - 625*x^10) / ((1 - 8*x^2 + 25*x^4)*(1 + 8*x^2 + 25*x^4)). a(n) = 14*a(n-4) - 625*a(n-8) for n>10. (End) EXAMPLE a(0) = 1 = numerator of Re((-1+3*i)^0) = 1/1 + 0*i. a(1) = -1 = numerator of Re(1/(-1+3*i)) = -1/10 - i*3/10. a(2) = -2 = numerator of Re((-1+3*i)^(-2)) = -2/25 + i*3/50. a(3) = 13 = numerator of Re((-1+3*i)^(-3)) = 13/500 + i*9/500. a(4) = 7 = numerator of Re((-1+3*i)^(-4)) = 7/2500 - i*6/625. a(5) = -79 = numerator of Re((-1+3*i)^(-5)) = -79/25000 + i*3/25000. a(6) = 11 = numerator of Re((-1+3*i)^(-6)) = 11/31250 + i*117/125000. a(7) = 307 = numerator of Re((-1+3*i)^(-7)) = 307/1250000 - i*249/1250000. a(8) = -527 = numerator of Re((-1+3*i)^(-8)) = -527/6250000 - i*21/390625. MATHEMATICA With[{o=-1+3I}, Table[Numerator[Re[o^-n]], {n, 0, 30}]] (* Harvey P. Dale, Sep 14 2013 *) CROSSREFS Sequence in context: A128155 A211366 A158088 * A292007 A213825 A333493 Adjacent sequences:  A124866 A124867 A124868 * A124870 A124871 A124872 KEYWORD easy,frac,sign AUTHOR Jonathan Vos Post, Nov 11 2006 EXTENSIONS Removed square roots from definition and formula. - R. J. Mathar, May 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 15:33 EDT 2021. Contains 343825 sequences. (Running on oeis4.)