login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124870
Denominator of real part of (3*i - 1)^(-n).
4
1, 10, 25, 500, 2500, 25000, 31250, 1250000, 6250000, 62500000, 78125000, 3125000000, 15625000000, 156250000000, 195312500000, 7812500000000, 39062500000000, 390625000000000, 488281250000000, 19531250000000000
OFFSET
0,2
COMMENTS
See A124869 for comments and references.
FORMULA
a(n) = denominator(Re(1/(-1 + i*3)^n) ).
1/(-1 + i*3)^n = A124869(n)/ A124870(n) + i*A124871(n)/A124872(n).
Conjectures from Colin Barker, Jul 16 2019: (Start)
G.f.: (1 + 10*x + 25*x^2 + 500*x^3 - 31250*x^6) / ((1 - 50*x^2)*(1 + 50*x^2)).
a(n) = 2500*a(n-4) for n>6.
(End)
EXAMPLE
a(0) = 1 = denominator of Re((-1+3*i)^0) = 1/1 + 0*i.
a(1) = 10 = denominator of Re(1/(-1+3*i)) = -1/10 - i*3/10.
a(2) = 25 = denominator of Re((-1+3*i)^(-2)) = -2/25 + i*3/50.
a(3) = 500 = denominator of Re((-1+3*i)^(-3)) = 13/500 + i*9/500.
a(4) = 2500 = denominator of Re((-1+3*i)^(-4)) = 7/2500 - i*6/625.
a(5) = 25000 = denominator of Re((-1+3*i)^(-5)) = -79/25000 + i*3/25000.
a(6) = 31250 = denominator of Re((-1+3*i)^(-6)) = 11/31250 + i*117/125000.
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Nov 11 2006
EXTENSIONS
Removed square roots from definition and formula. - R. J. Mathar, May 02 2009
STATUS
approved