login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124871
Numerator of imaginary part of (3*i - 1)^(-n).
4
0, -3, 3, 9, -6, 3, 117, -249, -21, 1917, -237, -9111, 1287, 24963, -76443, 28071, 11067, -848643, -922077, 6087369, -184623, -27482877, 34867797, 67678791, -15126111, 145641597, 1064447283, -2857102551, -308141733, 19215780483, -6890111163
OFFSET
0,2
LINKS
FORMULA
a(n) = numerator(Im(1/(-1 + i*3)^n) ). 1/(-1 + i*3)^n = A124869(n)/ A124870(n) + i*A124871(n)/A124872(n).
EXAMPLE
a(0) = 0 = numerator of Im((-1+3*i)^0) = 1/1 + 0*i.
a(1) = -3 = numerator of Im(1/(-1+3*i)) = -1/10 - i*3/10.
a(2) = 3 = numerator of Im((-1+3*i)^(-2)) = -2/25 + i*3/50.
a(3) = 9 = numerator of Im((-1+3*i)^(-3)) = 13/500 + i*9/500.
a(4) = -6 = numerator of Im((-1+3*i)^(-4)) = 7/2500 - i*6/625.
a(5) = 3 = numerator of Im((-1+3*i)^(-5)) = -79/25000 + i*3/25000.
a(6) = 117 = numerator of Im((-1+3*i)^(-6)) = 11/31250 + i*117/125000.
a(7) = -249 = numerator of Im((-1+3*i)^(-7)) = 307/1250000 - i*249/1250000.
a(8) = -21 = numerator of Im((-1+3*i)^(-8)) = -527/6250000 - i*21/390625.
MAPLE
B:= gfun:-rectoproc({-10*b(x + 2) - 2*b(x + 1) - b(x), b(0) = 0, b(1) = -3/10}, b(x), remember):
map(numer, [seq(B(n), n=0..50)]); # Robert Israel, Feb 02 2020
CROSSREFS
KEYWORD
easy,frac,sign
AUTHOR
Jonathan Vos Post, Nov 11 2006
EXTENSIONS
Removed square roots from definition and formula. - R. J. Mathar, May 02 2009
STATUS
approved