login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333493
a(n) = Sum_{k=1..n} (-1)^(k+1) * lcm(n,k) / gcd(n,k).
0
1, 1, -2, 13, -9, 28, -20, 109, -11, 151, -54, 256, -77, 442, 48, 877, -135, 757, -170, 1363, 103, 1816, -252, 2080, -59, 3043, -38, 3982, -405, 2878, -464, 7021, 273, 6937, 390, 6817, -665, 9748, 388, 11059, -819, 8407, -902, 16348, 219, 17458, -1080, 16672, -167
OFFSET
1,3
FORMULA
If n odd, a(n) = (1/2) * n * Sum_{d|n} Sum_{j|d} (-1)^(j + 1) * mu(d/j) * (n + d) / j^2.
If n even, a(n) = (1/2) * n^2 * Sum_{d|n} Sum_{j|d} (-1)^(j + 1) * mu(d/j) * (n + d) / (d * j^2).
MATHEMATICA
Table[Sum[(-1)^(k + 1) LCM[n, k]/GCD[n, k], {k, 1, n}], {n, 1, 49}]
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k+1)*lcm(n, k)/gcd(n, k)); \\ Michel Marcus, Mar 24 2020
CROSSREFS
Alternating row sums of A051537.
Sequence in context: A124869 A292007 A213825 * A244932 A157480 A342953
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Mar 24 2020
STATUS
approved