login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124668
Numbers that together with their prime factors contain every digit exactly once.
2
10968, 28651, 43610, 48960, 50841, 65821, 80416, 90584
OFFSET
1,1
COMMENTS
The exponents in the prime factorization are not considered here. See A273260 for that variant, which contains, e.g., 26487 = 3^5 * 109 and 61054 = 2 * 7^3 * 89. - M. F. Hasler, May 28 2024
EXAMPLE
10968 = 2^3 * 3 * 457.
MAPLE
isA124668 := proc(n) local digs, digs2, f, fac, b ; digs := convert(n, base, 10) ; f := ifactors(n)[2] ; for fac from 1 to nops(f) do b := op(1, op(fac, f)) ; digs := [op(digs), op(convert(b, base, 10))] ; od ; digs2 := convert(digs, set) ; if nops(digs2) = 10 and nops(digs2)=nops(digs) then print(n, f) ; RETURN(true) ; else RETURN(false) ; fi ; end : A124668aux := proc(n, dleft) local i, nnxt, dnxt ; isA124668(n) : for i from 1 to nops(dleft) do nnxt := 10*n+op(i, dleft) ; dnxt := dleft minus {op(i, dleft)} ; if nops(dnxt) > 0 then A124668aux(nnxt, dnxt) ; fi ; od ; end : dleft := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} : for i from 1 to 9 do dnxt := dleft minus {i} ; A124668aux(i, dnxt) : od : # R. J. Mathar, Jan 13 2007
MATHEMATICA
Select[Range[2, 1000000], Sort[Join[IntegerDigits[ # ], Flatten[IntegerDigits[Transpose[FactorInteger[ # ]][[1]]]]]] == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} &]
PROG
(PARI) is_A124668(n) = { vecsum([logint(f, 10)+1 | f<-n=concat(factor(n)[, 1], n)])==10 && #Set(concat([digits(f) | f<-n]))>9 }
L=List(); forvec(v=vector(5, i, [0, 9]), forperm(v, n, is_A124668(n=fromdigits(Vec(n)))&& listput(L, n)), 2); A124668=Set(L) \\ M. F. Hasler, Jun 05 2024
CROSSREFS
Cf. A273260: similar, but digits of exponents > 1 in the prime factorization are also taken into account.
Sequence in context: A205052 A251170 A035913 * A270148 A270115 A335082
KEYWORD
base,fini,full,nonn
AUTHOR
Tanya Khovanova, Dec 23 2006
STATUS
approved