login
A124667
Prime numbers p such that the sum of the digits of p equals the sums of the digits of p^3.
0
487, 577, 4877, 5851, 15877, 467587, 496187, 697967, 5889959, 8194787, 14596991, 17978887, 27698887, 47959487, 58590487, 58678903, 59489371, 79492771, 79897897, 79932871, 109148887, 109696969, 145969757, 227799577, 276857947
OFFSET
1,1
EXAMPLE
487^3 = 115501303 -- the sum of the digits of 487 and 115501303 is the same and is equal to 19.
MATHEMATICA
Select[Range[10000000], PrimeQ[ # ] && Plus @@ IntegerDigits[ # ] == Plus @@ IntegerDigits[ #^3] &]
Select[Prime[Range[151*10^5]], Total[IntegerDigits[#]]==Total[ IntegerDigits[ #^3]]&] (* Harvey P. Dale, Feb 17 2018 *)
CROSSREFS
An equivalent sequence for squares is A058370 = Primes p such that p and p^2 have same digit sum. This sequence is prime subsequence of A070276 = Sum of digits of n equals the sum of digits of n^3.
Sequence in context: A178813 A178814 A178812 * A142540 A048424 A142858
KEYWORD
base,nonn
AUTHOR
Tanya Khovanova, Dec 23 2006
EXTENSIONS
More terms from Olaf Voß, Feb 11 2008
STATUS
approved