|
|
A123581
|
|
a(1) = 3, a(n) = a(n-1) + greatest prime factor of a(n-1).
|
|
4
|
|
|
3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841, 870
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(16) = 88 because a(15) is 77 whose largest prime factor is 11 so 77 + 11 = 88.
|
|
MAPLE
|
local t;
t:= procname(n-1);
t + max(numtheory[factorset](t));
end proc;
|
|
MATHEMATICA
|
a[1] = 3; a[n_] := a[n] = a[n - 1] + FactorInteger[a[n - 1]][[ -1, 1]]; Array[a, 56] (* Robert G. Wilson v *)
|
|
PROG
|
(PARI) {print1(a=3, ", "); for(n=2, 57, print1(a=a+vecmax(factor(a)[, 1]), ", "))} \\ Klaus Brockhaus, Nov 19 2006
(Haskell)
a123581 n = a123581_list !! (n-1)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|