login
A123581
a(1) = 3, a(n) = a(n-1) + greatest prime factor of a(n-1).
5
3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841, 870
OFFSET
1,1
LINKS
FORMULA
a(n+1) = A070229(a(n)). - Reinhard Zumkeller, Nov 07 2015
EXAMPLE
a(16) = 88 because a(15) is 77 whose largest prime factor is 11 so 77 + 11 = 88.
MAPLE
A123581:= proc(n) option remember;
local t;
t:= procname(n-1);
t + max(numtheory[factorset](t));
end proc;
A123581(1):= 3;
seq(A123581(n), n=1..100); # Robert Israel, May 18 2014
MATHEMATICA
a[1] = 3; a[n_] := a[n] = a[n - 1] + FactorInteger[a[n - 1]][[ -1, 1]]; Array[a, 56] (* Robert G. Wilson v *)
PROG
(PARI) {print1(a=3, ", "); for(n=2, 57, print1(a=a+vecmax(factor(a)[, 1]), ", "))} \\ Klaus Brockhaus, Nov 19 2006
(Haskell)
a123581 n = a123581_list !! (n-1)
a123581_list = iterate a070229 3 -- Reinhard Zumkeller, Nov 07 2015
CROSSREFS
Essentially the same as A036441 and A076271.
Cf. A070229.
Sequence in context: A336803 A220657 A194273 * A187337 A371000 A184999
KEYWORD
nonn,easy
AUTHOR
Ben Paul Thurston, Nov 12 2006
EXTENSIONS
More terms from Robert G. Wilson v and Klaus Brockhaus, Nov 18 2006
STATUS
approved