login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123579
The Kruskal-Macaulay function M_3(n).
4
0, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27
OFFSET
0,3
COMMENTS
Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then M_t(n) = C(n_t-1,t-1) + C(n_{t-1}-1,t-2) + ... + C(n_v-1,v-1).
From Samuel Harkness, Sep 30 2022: (Start)
a(n) is the smallest number of balls needed on the base layer to stack n balls.
All nonrepeating terms other than a(0) occur at tetrahedral numbers + 1 (n = A000292 + 1).
The value of the nonrepeating terms other than a(0) are the Central Polygonal numbers (A000124). (End)
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.
LINKS
B. M. Abrego, S. Fernandez-Merchant, and B. Llano, An Inequality for Macaulay Functions, J. Int. Seq. 14 (2011) # 11.7.4.
MAPLE
lowpol := proc(n, t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x, t) <= n do x := x+1 ; od ; RETURN(x-1) ; end:
C := proc(n, t) local nresid, tresid, m, a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid, tresid) ; a := [op(a), m] ; nresid := nresid - binomial(m, tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end:
M := proc(n, t) local a ; a := C(n, t) ; add( binomial(op(i, a)-1, t-i), i=1..nops(a)) ; end:
A123579 := proc(n) M(n, 3) ; end:
for n from 0 to 120 do printf("%d, ", A123579(n)) ; od ; # R. J. Mathar, Mar 14 2007
MATHEMATICA
c = 0; T = {0}; For[r = 1, r <= 7, r++, For[n = 1, n <= r, n++, c++; For[m = 1, m <= n, m++, AppendTo[T, c]]]]; Take[T, 75] (* Samuel Harkness, Sep 30 2022 *)
CROSSREFS
For M_i(n), i=1, 2, 3, 4, 5 see A000127, A123578, A123579, A123580, A123731.
Sequence in context: A302779 A296020 A266350 * A166493 A005185 A119466
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 12 2006
STATUS
approved