login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123577
The Kruskal-Macaulay function L_5(n).
3
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 11, 13, 13, 13, 13, 14, 14, 14, 15, 15, 16, 18, 18, 18, 19, 19, 20, 22, 22, 23, 25, 28, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 31, 31, 32, 34, 34, 34, 34, 35, 35, 35, 36, 36
OFFSET
0,12
COMMENTS
Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then L_t(n) = C(n_t,t+1) + C(n_{t-1},t) + ... + C(n_v,v+1).
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.
MAPLE
lowpol := proc(n, t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x, t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n, t) local nresid, tresid, m, a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid, tresid) ; a := [op(a), m] ; nresid := nresid - binomial(m, tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: L := proc(n, t) local a ; a := C(n, t) ; add( binomial(op(i, a), t+2-i), i=1..nops(a)) ; end: A123577 := proc(n) L(n, 5) ; end: for n from 0 to 80 do printf("%d, ", A123577(n)) ; od ; # R. J. Mathar, May 18 2007
MATHEMATICA
(* The function L(n, t) is defined in A123575 *)
a[n_] := L[n, 5];
a /@ Range[0, 80] (* Jean-François Alcover, Mar 29 2020 *)
CROSSREFS
For L_i(n), i=1, 2, 3, 4, 5 see A000217, A111138, A123575, A123576, A123577.
Sequence in context: A120194 A120195 A121279 * A005854 A169991 A035435
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 12 2006
EXTENSIONS
More terms from R. J. Mathar, May 18 2007
STATUS
approved