login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The Kruskal-Macaulay function L_5(n).
3

%I #12 Mar 29 2020 17:16:01

%S 0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,3,3,3,4,4,5,7,7,7,7,7,8,8,8,8,9,9,9,10,

%T 10,11,13,13,13,13,14,14,14,15,15,16,18,18,18,19,19,20,22,22,23,25,28,

%U 28,28,28,28,29,29,29,29,30,30,30,31,31,32,34,34,34,34,35,35,35,36,36

%N The Kruskal-Macaulay function L_5(n).

%C Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then L_t(n) = C(n_t,t+1) + C(n_{t-1},t) + ... + C(n_v,v+1).

%D D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.

%p lowpol := proc(n,t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x,t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n,t) local nresid,tresid,m,a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid,tresid) ; a := [op(a),m] ; nresid := nresid - binomial(m,tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: L := proc(n,t) local a ; a := C(n,t) ; add( binomial(op(i,a),t+2-i),i=1..nops(a)) ; end: A123577 := proc(n) L(n,5) ; end: for n from 0 to 80 do printf("%d, ",A123577(n)) ; od ; # _R. J. Mathar_, May 18 2007

%t (* The function L(n,t) is defined in A123575 *)

%t a[n_] := L[n, 5];

%t a /@ Range[0, 80] (* _Jean-François Alcover_, Mar 29 2020 *)

%Y For L_i(n), i=1, 2, 3, 4, 5 see A000217, A111138, A123575, A123576, A123577.

%K nonn,easy

%O 0,12

%A _N. J. A. Sloane_, Nov 12 2006

%E More terms from _R. J. Mathar_, May 18 2007