|
|
A123731
|
|
The Kruskal-Macaulay function M_5(n).
|
|
4
|
|
|
0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 14, 15, 15, 15, 16, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 24, 25, 25, 25, 26, 27, 28, 28, 29, 30, 30, 31, 31, 31, 32, 33, 33, 34, 34, 34, 35, 35, 35, 35, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 44, 45, 45, 45, 46
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then M_t(n) = C(n_t-1,t-1) + C(n_{t-1}-1,t-2) + ... + C(n_v-1,v-1).
|
|
REFERENCES
|
D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.
|
|
LINKS
|
Table of n, a(n) for n=0..72.
|
|
MAPLE
|
lowpol := proc(n, t) local x::integer; x := floor( (n*factorial(t))^(1/t)); while binomial(x, t) <= n do x := x+1; od; RETURN(x-1); end:
C := proc(n, t) local nresid, tresid, m, a; nresid := n; tresid := t; a := []; while nresid > 0 do m := lowpol(nresid, tresid); a := [op(a), m]; nresid := nresid - binomial(m, tresid); tresid := tresid-1; od; RETURN(a); end:
M := proc(n, t) local a; a := C(n, t); add( binomial(op(i, a)-1, t-i), i=1..nops(a)); end:
A123731 := proc(n) M(n, 5); end:
for n from 0 to 120 do printf("%d, ", A123731(n)); od; # R. J. Mathar, Mar 14 2007
|
|
CROSSREFS
|
For M_i(n), i=1, 2, 3, 4, 5 see A000127, A123578, A123579, A123580, A123731.
Sequence in context: A317334 A331266 A172103 * A247973 A352241 A195181
Adjacent sequences: A123728 A123729 A123730 * A123732 A123733 A123734
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2006
|
|
EXTENSIONS
|
More terms from R. J. Mathar, Mar 14 2007
|
|
STATUS
|
approved
|
|
|
|