login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123730
Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial p[n,x] defined by p[ -1,x]=0, p[0,x]=1, p[1,x]=-x, p[n,x]=x*p[n-1,x]-(n-1)*p[n- 2,x]+(n-2)*p[n-3,x] for n>=2 (0<=k<=n).
0
1, 0, -1, -1, 0, -1, 1, 1, 0, -1, 3, -1, 4, 0, -1, -7, -1, -4, 8, 0, -1, -11, 2, -21, -8, 13, 0, -1, 57, -10, 46, -69, -13, 19, 0, -1, 35, 37, 113, 150, -160, -19, 26, 0, -1, -533, 129, -478, 609, 345, -312, -26, 34, 0, -1, 141, -946, -520, -2380, 1945, 668, -546, -34, 43, 0, -1
OFFSET
1,11
EXAMPLE
Triangular sequence:
{1},
{0, -1},
{-1, 0, -1},
{1, 1, 0, -1},
{3, -1, 4, 0, -1},
{-7, -1, -4, 8, 0, -1},
{-11, 2, -21, -8, 13, 0, -1},
{57, -10, 46, -69, -13,19, 0, -1},
{35, 37, 113, 150, -160, -19, 26, 0, -1},
{-533, 129, -478, 609, 345, -312, -26, 34, 0, -1},
{141, -946, -520, -2380, 1945, 668, -546, -34, 43, 0, -1}
MAPLE
p[ -1]:=0: p[0]:=1: p[1]:=-x: for n from 2 to 10 do p[n]:=sort(expand(x*p[n-1]-(n-1)*p[n-2]+(n-2)*p[n-3])) od: for n from 0 to 10 do seq(coeff(p[n], x, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
p[ -1, x] = 0; p[0, x] = 1; p[1, x] = -x; p[k_, x_] := p[k, x] = x*p[k - 1, x] - (k - 1)*p[k - 2, x] + (k - 2)*p[k - 3, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
CROSSREFS
Sequence in context: A119719 A125162 A174382 * A143317 A130540 A076816
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Dec 03 2006
STATUS
approved