login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194273
Concentric triangular numbers (see Comments lines for definition).
3
0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55, 63, 72, 81, 90, 99, 109, 120, 132, 144, 156, 168, 181, 195, 210, 225, 240, 255, 271, 288, 306, 324, 342, 360, 379, 399, 420, 441, 462, 483, 505, 528, 552, 576, 600, 624, 649, 675, 702, 729, 756, 783, 811
OFFSET
0,3
COMMENTS
This can be interpreted as a cellular automaton on the infinite hexagonal net. The sequence gives the number of cells "ON" in the structure after n-th stage. A194272 gives the first differences. For a definition without words see the illustration of initial terms in the example section. For other concentric polygonal numbers see A194274, A194275 and A032528.
Also, row sums of an infinite square array T(n,k) in which column k lists 6*k-1 zeros followed by the numbers A008486 (see example).
FORMULA
G.f.: x/(1-3*x+3*x^2-3*x^4+3*x^5-x^6) = x/((1-x)^3*(1+x)*(1-x+x^2)).
EXAMPLE
Using the numbers A008486 we can write:
0, 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,...
0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 12, 15, 18,...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,...
And so on.
=========================================================
The sums of the columns give this sequence:
0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55,...
...
Illustration of initial terms:
. o
. o o o
. o o o o o
. o o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
.
. 1 3 6 9 12 15
.
. o
. o o o
. o o o o o
. o o o o o o
. o o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
.
. 19 24 30
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 20 2011
STATUS
approved