login
A122897
Riordan array (1/(1-x), c(x)-1) where c(x) is the g.f. of A000108.
2
1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 19, 7, 1, 1, 64, 67, 34, 9, 1, 1, 196, 232, 144, 53, 11, 1, 1, 625, 804, 573, 261, 76, 13, 1, 1, 2055, 2806, 2211, 1171, 426, 103, 15, 1, 1, 6917, 9878, 8399
OFFSET
0,5
COMMENTS
Product of A007318 and A122896. Inverse of Riordan array ((1+x+x^2)/(1+x)^2,x/(1+x)^2). Row sums are A024718.
The n-th row polynomial (in descending powers of x) equals the n-th Taylor polynomial of the rational function (1 - x^2)/(1 + x + x^2) * (1 + x)^(2*n) about 0. For example, for n = 4 we have (1 - x^2)/( 1 + x + x^2) * (1 + x)^8 = (x^4 + 22*x^3 + 19*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 21 2018
FORMULA
T(n,k) = binomial(2*n,n-k) + 2*Sum_{j = 1..n-k} cos((2/3)*Pi*j)* binomial(2*n, n-k-j). - Peter Bala, Feb 21 2018
T(n,k) = k*Sum_{i=0..n-k} C(2*(i+k),i)/(i+k), T(n,0)=1. - Vladimir Kruchinin, Jun 13 2020
EXAMPLE
Triangle begins
1,
1, 1,
1, 3, 1,
1, 8, 5, 1,
1, 22, 19, 7, 1,
1, 64, 67, 34, 9, 1,
1, 196, 232, 144, 53, 11, 1,
1, 625, 804, 573, 261, 76, 13, 1,
1, 2055, 2806, 2211, 1171, 426, 103, 15, 1,
1, 6917, 9878, 8399, 4979, 2126, 647, 134, 17, 1,
1, 23713, 35072, 31655, 20483, 9878, 3554, 932, 169, 19, 1
MAPLE
A122897 := proc (n, k)
binomial(2*n, n-k) + 2*add(cos((2/3)*Pi*j)*binomial(2*n, n-k-j), j = 1..n-k)
end proc:
for n from 0 to 10 do
seq(A122897(n, k), k = 0..n)
end do; # Peter Bala, Feb 21 2018
CROSSREFS
Sequence in context: A114276 A152879 A098747 * A117425 A287215 A168216
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 18 2006
STATUS
approved