OFFSET
1,4
COMMENTS
T(n,0) = A000958(n-1). - Emeric Deutsch, Dec 23 2006
LINKS
Yidong Sun, The statistic "number of udu's" in Dyck paths, Discrete Math., 287 (2004), 177-186.
FORMULA
See Mathematica line.
G.f.=zC/(1+z-tz-zC), where C=(1-sqrt(1-4z))/(2z) is the Catalan function. - Emeric Deutsch, Dec 23 2006
With offset 0 (0<=k<=n), T(n,k)=A065600(n,k)+A065600(n+1,k)-A065600(n,k-1). - Philippe Deléham, Apr 01 2007
EXAMPLE
Triangle begins:
1
1 1
3 1 1
8 4 1 1
24 11 5 1 1
75 35 14 6 1 1
T(4,2)=1 because we have UDUDUUDD.
MAPLE
c:=(1-sqrt(1-4*z))/2/z: G:=z*c/(1-t*z+z-z*c): Gser:=simplify(series(G, z=0, 15)): for n from 1 to 13 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 1 to 12 do seq(coeff(P[n], t, k), k=0..n-1) od; # yields sequence in triangular form - Emeric Deutsch, Dec 23 2006
MATHEMATICA
u[n_, k_, i_]:=(2i+1)/(n-k)Binomial[k+i, i]Binomial[2n-2k-2i-2, n-k-1] u[n_, k_]/; k<=n-1 := Sum[u[n, k, i], {i, 0, n-k-1}] Table[u[n, k], {n, 10}, {k, 0, n-1}] (* u[n, k, i] is the number of Dyck n-paths with k low UDUs and k+i+1 returns altogether. For example, with n=4, k=1 and i=1, u[n, k, i] counts UDUUDDUD, UUDDUDUD because each has size n=4, k=1 low UDUs and k+i+1=3 returns to ground level. *) (* David Callan, Nov 03 2005 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 30 2004
STATUS
approved