OFFSET
0,2
REFERENCES
C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.
LINKS
N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math.CO/0502082 , Canad. J. Math. 60 (2008), no. 2, 266-296.
FORMULA
G.f.: (1-q)*(1-q^2)*(1-q^3)/(1-3*q) 3^n - 3^(n-1) - 3^(n-2) + 3^(n-4) + 3^(n-5) - 3^(n-6) (for n>5) a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 15, a(4) = 46, a(5) = 139, a(n) = 416*3^(n-6) for n>5
EXAMPLE
a(1) = 2 because x1 - x2, x2 - x3 are killed by d_x1 + d_x2 + d_x3
a(2) = 5 because x1 x2 - x2 x1, x1 x3 - x3 x1, x2 x3 - x3 x2, 2 x1 x2 - x2 x2 - 2 x1 x3 + x3 x3,
x1 x1 - 2 x2 x1 + 2 x2 x3 - x3 x3 are killed by d_x1 + d_x2 + d_x3, d_x1^2 + d_x2^2 + d_x3^2 and
d_x1 d_x2 + d_x1 d_x3 + d_x2 d_x3
MAPLE
coeffs(convert(series(mul(1-q^i, i=1..3)/(1-3*q), q, 20), `+`)-O(q^20), q);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mike Zabrocki, Aug 31 2006
STATUS
approved