login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047086
a(n) = T(2*n+1, n), array T as in A047080.
9
1, 2, 5, 15, 46, 143, 450, 1429, 4570, 14698, 47491, 154042, 501283, 1635835, 5351138, 17541671, 57610988, 189521640, 624389105, 2059824523, 6803433916, 22495796651, 74457478476, 246667937610, 817866796549, 2713874203112, 9011747680649, 29944572743724
OFFSET
0,2
LINKS
FORMULA
a(n+4) = ((16*n^3 + 100*n^2 + 188*n + 105)*a(n+3) - (8*n^3 + 36*n^2 + 46*n + 5)*a(n+2) + (4*n^2 + 16*n + 25)*a(n+1) - (n-1)*(2*n+5)^2*a(n))/((n+4)*(2*n+3)^2). - G. C. Greubel, Oct 30 2022
MATHEMATICA
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j, 0, Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k-2)/3]}];
T[n_, k_]:= A[n-k, k];
Table[T[2*n+1, n], {n, 0, 50}] (* G. C. Greubel, Oct 30 2022 *)
PROG
(Magma)
F:=Factorial;
p:= func< n, k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n, k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n, k | p(n, k) - q(n, k) >;
[A(n+1, n): n in [0..50]]; // G. C. Greubel, Oct 30 2022
(SageMath)
f=factorial
def p(n, k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n, k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n, k): return p(n, k) - q(n, k)
[A(n+1, n) for n in range(51)] # G. C. Greubel, Oct 30 2022
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Sean A. Irvine, May 11 2021
STATUS
approved