Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Oct 31 2022 07:34:03
%S 1,2,5,15,46,143,450,1429,4570,14698,47491,154042,501283,1635835,
%T 5351138,17541671,57610988,189521640,624389105,2059824523,6803433916,
%U 22495796651,74457478476,246667937610,817866796549,2713874203112,9011747680649,29944572743724
%N a(n) = T(2*n+1, n), array T as in A047080.
%H G. C. Greubel, <a href="/A047086/b047086.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n+4) = ((16*n^3 + 100*n^2 + 188*n + 105)*a(n+3) - (8*n^3 + 36*n^2 + 46*n + 5)*a(n+2) + (4*n^2 + 16*n + 25)*a(n+1) - (n-1)*(2*n+5)^2*a(n))/((n+4)*(2*n+3)^2). - _G. C. Greubel_, Oct 30 2022
%t A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j, 0, Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k-2)/3]}];
%t T[n_, k_]:= A[n-k,k];
%t Table[T[2*n+1,n], {n,0,50}] (* _G. C. Greubel_, Oct 30 2022 *)
%o (Magma)
%o F:=Factorial;
%o p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
%o q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
%o A:= func< n,k | p(n,k) - q(n,k) >;
%o [A(n+1,n): n in [0..50]]; // _G. C. Greubel_, Oct 30 2022
%o (SageMath)
%o f=factorial
%o def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
%o def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
%o def A(n,k): return p(n,k) - q(n,k)
%o [A(n+1,n) for n in range(51)] # _G. C. Greubel_, Oct 30 2022
%Y Cf. A047080, A047081, A047082, A047083, A047084, A047085, A047087, A047088.
%K nonn
%O 0,2
%A _Clark Kimberling_
%E Corrected and extended by _Sean A. Irvine_, May 11 2021