login
A122395
Primes of the form p^k - p^(k-1) - 1, with p prime and k>1.
2
3, 5, 7, 17, 19, 31, 41, 53, 109, 127, 271, 293, 499, 811, 929, 2027, 2161, 3659, 4373, 4421, 4969, 8191, 9311, 10099, 13121, 13309, 16001, 17029, 19181, 22051, 32579, 38611, 57839, 72091, 78607, 93941, 109229, 128521, 131071, 143261, 157211
OFFSET
1,1
COMMENTS
The paper by Stein and Williams gives a method for finding primes of this form when k>(p+1)/2.
LINKS
Andreas Stein and H. C. Williams, Explicit primality criteria for (p-1)p^n-1, Math. Comp. 69 (2000), 1721-1734.
MAPLE
N:= 10^6: # for terms <= N
p:= 1: R:= NULL:
do
p:= nextprime(p);
if p^2 - p - 1 > N then break fi;
for k from 2 do
q:= p^k - p^(k-1)-1;
if q > N then break fi;
if isprime(q) then R:= R, q fi;
od od:
sort(convert({R}, list)); # Robert Israel, Mar 12 2023
MATHEMATICA
nn=10^6; lst={}; n=1; While[p=Prime[n]; k=2; While[m=p^k-p^(k-1)-1; m<nn, If[PrimeQ[m], AppendTo[lst, m]]; k++ ]; k>2, n++ ]; lst=Union[lst]
CROSSREFS
Cf. A122396.
Sequence in context: A374156 A191038 A299298 * A045401 A085499 A169628
KEYWORD
nonn
AUTHOR
T. D. Noe, Aug 31 2006
STATUS
approved