login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122393
Dimension of 4-variable non-commutative harmonics (Hausdorff derivative). The dimension of the space of non-commutative polynomials in 4 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( w ) = sum over all subwords of w deleting xi once).
3
1, 3, 11, 44, 176, 706, 2824, 11296, 45183, 180731, 722925, 2891700, 11566800, 46267200, 185068800, 740275200, 2961100800, 11844403200, 47377612800, 189510451200, 758041804800, 3032167219200, 12128668876800, 48514675507200
OFFSET
0,2
REFERENCES
C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.
LINKS
N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math.CO/0502082, Canad. J. Math. 60 (2008), no. 2, 266-296.
FORMULA
G.f.: (1-q)*(1-q^2)*(1-q^3)*(1-q^4)/(1-4*q) a(n) = 722925*4^(n-10) for n>9
EXAMPLE
a(1) = 3 because x1 - x2, x2 - x3, x3 - x4 are all killed by d_x1+d_x2+d_x3+d_x4
MAPLE
coeffs(convert(series(mul(1-q^i, i=1..4)/(1-4*q), q, 20), `+`)-O(q^20), q);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mike Zabrocki, Aug 31 2006
STATUS
approved