

A120881


a(n) = number of k's, for 1 <= k <= n, where GCD(k,floor(n/k)) > 1.


2



0, 0, 0, 1, 1, 0, 0, 2, 3, 2, 2, 2, 2, 1, 1, 4, 4, 4, 4, 5, 4, 3, 3, 5, 6, 5, 7, 8, 8, 3, 3, 7, 7, 6, 6, 8, 8, 7, 6, 9, 9, 6, 6, 7, 9, 8, 8, 11, 12, 12, 12, 13, 13, 14, 13, 15, 14, 13, 13, 11, 11, 10, 11, 16, 16, 12, 12, 13, 13, 10, 10, 15, 15, 14, 15, 16, 16, 13, 13, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,8


COMMENTS

A120881(n) + A120882(n) = n.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000


EXAMPLE

For n = 8, we have the pairs {k,floor(n/k)} of {1,8},{2,4},{3,2},{4,2},{5,1},{6,1},{7,1},{8,1}. From these pairs we get the GCD's of 1,2,1,2,1,1,1,1. 2 of these GCD's are > 1. So a(8)= 2.


MATHEMATICA

Table[Length[Select[Table[GCD[k, Floor[n/k]], {k, 1, n}], # > 1 &]], {n, 1, 80}] (* Stefan Steinerberger, Jul 23 2006 *)


PROG

(PARI) a(n) = sum(k=1, n, gcd(k, n\k) > 1); \\ Michel Marcus, Feb 16 2014


CROSSREFS

Cf. A120882.
Sequence in context: A030329 A300139 A300666 * A297930 A031217 A064131
Adjacent sequences: A120878 A120879 A120880 * A120882 A120883 A120884


KEYWORD

nonn


AUTHOR

Leroy Quet, Jul 12 2006


EXTENSIONS

More terms from Stefan Steinerberger, Jul 23 2006


STATUS

approved



