login
A031217
Number of terms in longest arithmetic progression of consecutive primes starting at n-th prime (conjectured to be unbounded).
12
2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2
OFFSET
1,1
COMMENTS
a(n) <= 4 for n <= 10^5. - Reinhard Zumkeller, Feb 02 2007
The first instance of 4 consecutive primes in an arithmetic progression is (251, 257, 263, 269), which starts with the 54th prime. The first instance of 5 consecutive primes in an arithmetic progression is (9843019, 9843049, 9843079, 9843109, 9843139), which starts with the 654926th prime. [Harvey P. Dale, Jul 13 2011]
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A6.
EXAMPLE
At 47 there are 3 consecutive primes in A.P., 47 53 59.
MATHEMATICA
max = 5; a[n_] := Catch[pp = NestList[ NextPrime, Prime[n], max-1]; Do[ If[ Length[ Union[ Differences[pp[[1 ;; -k]] ] ] ] == 1, Throw[max-k+1]], {k, 1, max-1}]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jul 17 2012 *)
Length[Split[Differences[#]][[1]]]&/@Partition[Prime[Range[120]], 10, 1]+1 (* Harvey P. Dale, Mar 17 2024 *)
PROG
(PARI) a(n)=my(p=prime(n), q=nextprime(p+1), g=q-p, k=2); while(nextprime(q+1)==q+g, q+=g; k++); k \\ Charles R Greathouse IV, Jun 20 2013
CROSSREFS
Cf. A001223.
Sequence in context: A300666 A120881 A297930 * A064131 A368859 A338238
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers
STATUS
approved