login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120038
Number of 7-almost primes 7ap such that 2^n < 7ap <= 2^(n+1).
8
0, 0, 0, 0, 0, 0, 1, 1, 5, 8, 22, 46, 99, 224, 461, 1013, 2093, 4459, 9388, 19603, 40946, 85087, 177200, 366248, 758686, 1565038, 3226717, 6641105, 13648299, 28018956, 57445770, 117667693, 240751326, 492172466, 1005221914, 2051468099
OFFSET
0,9
COMMENTS
The partial sum equals the number of Pi_7(2^n).
EXAMPLE
(2^7, 2^8] there is one semiprime, namely 192. 128 was counted in the previous entry.
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
t = Table[AlmostPrimePi[7, 2^n], {n, 0, 30}]; Rest@t - Most@t
KEYWORD
nonn
AUTHOR
STATUS
approved