login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120034
Number of 3-almost primes t such that 2^n < t <= 2^(n+1).
8
0, 0, 1, 1, 5, 6, 17, 30, 65, 131, 257, 536, 1033, 2132, 4187, 8370, 16656, 33123, 65855, 130460, 259431, 513737, 1019223, 2019783, 4003071, 7930375, 15712418, 31126184, 61654062, 122137206, 241920724, 479226157, 949313939, 1880589368, 3725662783
OFFSET
0,5
COMMENTS
The partial sum equals the number of Pi_3(2^n) = A127396(n).
EXAMPLE
(2^3, 2^4] there is one semiprime, namely 12. 8 was counted in the previous entry.
MATHEMATICA
ThreeAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi@Sqrt[n/Prime@i]}]; t = Table[ ThreePrimePi[2^n], {n, 0, 35}]; Rest@t - Most@t
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved