login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118824
2-adic continued fraction of zero, where a(n) = -2 if n is odd, A006519(n/2) otherwise.
6
-2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 32, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 8, -2, 1, -2, 2, -2, 1, -2, 4, -2, 1, -2, 2, -2, 1, -2, 16, -2, 1, -2, 2, -2, 1
OFFSET
1,1
COMMENTS
Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118827, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.
LINKS
EXAMPLE
For n >= 1, convergents A118825(k)/A118826(k):
at k = 4*n: 1/A080277(n);
at k = 4*n+1: 2/(2*A080277(n)-1);
at k = 4*n+2: 1/(A080277(n)-1);
at k = 4*n-1: 0.
Convergents begin:
-2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4,
-2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12,
-2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16,
-2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...
MATHEMATICA
Array[If[OddQ@ #, -2, 2^(IntegerExponent[#, 2] - 1)] &, 102] (* Michael De Vlieger, Nov 06 2018 *)
PROG
(PARI) a(n)=local(p=-2, q=+1); if(n%2==1, p, q*2^valuation(n/2, 2))
CROSSREFS
Cf. A006519, A080277; convergents: A118825/A118826; variants: A118821, A118827, A118830; A100338.
Sequence in context: A232443 A376781 A118821 * A209402 A082641 A334507
KEYWORD
cofr,sign
AUTHOR
Paul D. Hanna, May 01 2006
STATUS
approved