login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2-adic continued fraction of zero, where a(n) = -2 if n is odd, A006519(n/2) otherwise.
6

%I #13 Nov 09 2018 21:57:57

%S -2,1,-2,2,-2,1,-2,4,-2,1,-2,2,-2,1,-2,8,-2,1,-2,2,-2,1,-2,4,-2,1,-2,

%T 2,-2,1,-2,16,-2,1,-2,2,-2,1,-2,4,-2,1,-2,2,-2,1,-2,8,-2,1,-2,2,-2,1,

%U -2,4,-2,1,-2,2,-2,1,-2,32,-2,1,-2,2,-2,1,-2,4,-2,1,-2,2,-2,1,-2,8,-2,1,-2,2,-2,1,-2,4,-2,1,-2,2,-2,1,-2,16,-2,1,-2,2,-2,1

%N 2-adic continued fraction of zero, where a(n) = -2 if n is odd, A006519(n/2) otherwise.

%C Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118827, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.

%H Antti Karttunen, <a href="/A118824/b118824.txt">Table of n, a(n) for n = 1..65537</a>

%e For n >= 1, convergents A118825(k)/A118826(k):

%e at k = 4*n: 1/A080277(n);

%e at k = 4*n+1: 2/(2*A080277(n)-1);

%e at k = 4*n+2: 1/(A080277(n)-1);

%e at k = 4*n-1: 0.

%e Convergents begin:

%e -2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4,

%e -2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12,

%e -2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16,

%e -2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ...

%t Array[If[OddQ@ #, -2, 2^(IntegerExponent[#, 2] - 1)] &, 102] (* _Michael De Vlieger_, Nov 06 2018 *)

%o (PARI) a(n)=local(p=-2,q=+1);if(n%2==1,p,q*2^valuation(n/2,2))

%Y Cf. A006519, A080277; convergents: A118825/A118826; variants: A118821, A118827, A118830; A100338.

%K cofr,sign

%O 1,1

%A _Paul D. Hanna_, May 01 2006