login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118822
Numerators of the convergents of the 2-adic continued fraction of zero given by A118821.
4
2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1, -2, 1, 0, 1, 2, -1, 0, -1
OFFSET
1,1
FORMULA
Period 8 sequence: [2,-1,0,-1,-2,1,0,1].
G.f.: -x*(x-1)*(x^2+x+2) / ( 1+x^4 ).
a(n) = sqrt((n+1)^2 mod 8)(-1)^floor((n+2)/4). - Wesley Ivan Hurt, Jan 01 2014
EXAMPLE
For n>=1, convergents A118822(k)/A118823(k) are:
at k = 4*n: -1/A080277(n);
at k = 4*n+1: -2/(2*A080277(n)-1);
at k = 4*n+2: -1/(A080277(n)-1);
at k = 4*n-1: 0/(-1)^n.
Convergents begin:
2/1, -1/-1, 0/-1, -1/1, -2/1, 1/0, 0/1, 1/-4,
2/-7, -1/3, 0/-1, -1/5, -2/9, 1/-4, 0/1, 1/-12,
2/-23, -1/11, 0/-1, -1/13, -2/25, 1/-12, 0/1, 1/-16,
2/-31, -1/15, 0/-1, -1/17, -2/33, 1/-16, 0/1, 1/-32, ...
MAPLE
A118822:=n->sqrt((n+1)^2 mod 8)*(-1)^floor((n+2)/4); seq(A118822(n), n=1..100); # Wesley Ivan Hurt, Jan 01 2014
MATHEMATICA
Table[Sqrt[Mod[(n+1)^2, 8](-1)^Floor[(n+2)/4], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2014 *)
PROG
(PARI) {a(n)=local(p=+2, q=-1, v=vector(n, i, if(i%2==1, p, q*2^valuation(i/2, 2)))); contfracpnqn(v)[1, 1]}
for(n=0, 80, print1(a(n), ", "))
(PARI) {a(n) = [2, -1, 0, -1, -2, 1, 0, 1][(n-1)%8+1]; } \\ Joerg Arndt, Jan 02 2014
CROSSREFS
Cf. A118821 (partial quotients), A118823 (denominators).
Sequence in context: A118825 A007877 A098178 * A230074 A230075 A334947
KEYWORD
frac,sign
AUTHOR
Paul D. Hanna, May 01 2006
STATUS
approved