login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of the convergents of the 2-adic continued fraction of zero given by A118821.
4

%I #22 Dec 14 2023 05:25:10

%S 2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,

%T -2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,

%U -1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1,-2,1,0,1,2,-1,0,-1

%N Numerators of the convergents of the 2-adic continued fraction of zero given by A118821.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,-1).

%F Period 8 sequence: [2,-1,0,-1,-2,1,0,1].

%F G.f.: -x*(x-1)*(x^2+x+2) / ( 1+x^4 ).

%F a(n) = sqrt((n+1)^2 mod 8)(-1)^floor((n+2)/4). - _Wesley Ivan Hurt_, Jan 01 2014

%e For n>=1, convergents A118822(k)/A118823(k) are:

%e at k = 4*n: -1/A080277(n);

%e at k = 4*n+1: -2/(2*A080277(n)-1);

%e at k = 4*n+2: -1/(A080277(n)-1);

%e at k = 4*n-1: 0/(-1)^n.

%e Convergents begin:

%e 2/1, -1/-1, 0/-1, -1/1, -2/1, 1/0, 0/1, 1/-4,

%e 2/-7, -1/3, 0/-1, -1/5, -2/9, 1/-4, 0/1, 1/-12,

%e 2/-23, -1/11, 0/-1, -1/13, -2/25, 1/-12, 0/1, 1/-16,

%e 2/-31, -1/15, 0/-1, -1/17, -2/33, 1/-16, 0/1, 1/-32, ...

%p A118822:=n->sqrt((n+1)^2 mod 8)*(-1)^floor((n+2)/4); seq(A118822(n), n=1..100); # _Wesley Ivan Hurt_, Jan 01 2014

%t Table[Sqrt[Mod[(n+1)^2, 8](-1)^Floor[(n+2)/4], {n, 100}] (* _Wesley Ivan Hurt_, Jan 01 2014 *)

%o (PARI) {a(n)=local(p=+2,q=-1,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[1,1]}

%o for(n=0,80,print1(a(n),", "))

%o (PARI) {a(n) = [2,-1,0,-1,-2,1,0,1][(n-1)%8+1];} \\ _Joerg Arndt_, Jan 02 2014

%Y Cf. A118821 (partial quotients), A118823 (denominators).

%K frac,sign

%O 1,1

%A _Paul D. Hanna_, May 01 2006