|
|
A118276
|
|
Signature sequence of Phi^2 = 2.618033989... (A104457), where Phi is the golden ratio A001622.
|
|
6
|
|
|
1, 2, 3, 1, 4, 2, 5, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11, 6, 14, 1, 9, 4, 12, 7, 15, 2, 10, 5, 13, 8, 16, 3, 11, 6, 14, 1, 9, 17, 4, 12, 7, 15, 2, 10, 18, 5, 13, 8, 16, 3, 11, 19, 6, 14, 1, 9, 17, 4, 12, 20, 7, 15, 2, 10, 18, 5, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Equals A023119 in the first 98 terms, then the sequences differ. [From R. J. Mathar, Aug 08 2008]
|
|
REFERENCES
|
C. Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n=1..1000
Eric Weisstein's World of Mathematics, Signature Sequence
|
|
MATHEMATICA
|
terms = 90; m = Ceiling[Sqrt[terms]]; s0 = {}; While[s = (Table[i + j*GoldenRatio^2, {i, 1, m}, {j, 1, m}] // Flatten // SortBy[#, N] &)[[1 ;; terms]] /. GoldenRatio -> 0; s != s0, s0 = s; m = 2 m]; s (* Jean-François Alcover, Jan 08 2017 *)
|
|
CROSSREFS
|
Cf. A084531, A084532, A167970.
Sequence in context: A125159 A179548 A023119 * A023123 A023131 A356625
Adjacent sequences: A118273 A118274 A118275 * A118277 A118278 A118279
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Casey Mongoven, Apr 21 2006
|
|
STATUS
|
approved
|
|
|
|