login
A167970
Signature sequence of phi^2 = 0.38196601125011..., where phi is the golden ratio 0.61803398874989... .
1
1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 4, 1, 6, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 2
OFFSET
1,4
REFERENCES
Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.
MATHEMATICA
terms = 105; m = Ceiling[Sqrt[terms]]; s0 = {}; While[s = (Table[i + j/GoldenRatio^2, {i, 1, m}, {j, 1, m}] // Flatten // SortBy[#, N] &)[[1 ;; terms]] /. GoldenRatio -> \[Infinity]; s != s0, s0 = s; m = 2 m]; s (* Jean-François Alcover, Jan 08 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Casey Mongoven, Nov 15 2009
STATUS
approved