

A084531


Signature sequence of phi = (1+sqrt(5))/2 = 1.61803...


24



1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, 3, 8, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9, 1, 14, 6, 11, 3, 8, 13, 5, 10, 2, 15, 7, 12, 4, 9, 1, 14, 6, 11, 3, 16, 8, 13, 5, 10, 2, 15, 7, 12, 4, 17, 9, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x; the sequence of j's is the signature of 1/x.
As a fractal sequence, if the first occurrence of each n is deleted, the remaining sequence is the original. That is, the upper trim of A084531 is A084531. Also, the lower trim of A084531 is A084531, meaning that if 1 is subtracted from every term and then all 0's are deleted, the result is the original sequence. Every fractal sequence begets an interspersion; the interspersion of A084531 is A167267.  Clark Kimberling, Oct 31 2009


REFERENCES

Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157168.


LINKS

Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, Daisy Ann A. Disu, On Fractal Sequences, DMMMSUCAS Science Monitor (20162017) Vol. 15 No. 2, 109113.


MATHEMATICA

x = GoldenRatio; Take[Transpose[Sort[Flatten[Table[{i + j*x, i}, {i, 30}, {j, 20}], 1], #1[[1]] < #2[[1]] &]][[2]], 100] (* Clark Kimberling, Nov 10 2012 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



