login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118060
a(n) = 1681*n^2 - 984*n - 696.
3
1, 4060, 11481, 22264, 36409, 53916, 74785, 99016, 126609, 157564, 191881, 229560, 270601, 315004, 362769, 413896, 468385, 526236, 587449, 652024, 719961, 791260, 865921, 943944, 1025329, 1110076, 1198185, 1289656, 1384489, 1482684, 1584241
OFFSET
1,2
COMMENTS
In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+ (x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(4)=A001652(4)=696 and z(4)=A001653(4)=985; cf. A000290, A118057-A118059, A118061.
FORMULA
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+4057*x-696*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
a(n)+(a(n)+1)+...+(a(n)+1681n+1188) = (a(n)+1681n+1189)+ ... +a(n+1)-1; a(n+1)-1 = a(n)+3362n+696.
a(n)+(a(n)+1)+...+(a(n)+1681n+1188)=41(41n-12)(41n+29)(82n+17)/2; e.g., 11481+11482+...+17712=90965388=41*111*152*263/2.
EXAMPLE
a(3)=1681*3^2-984*3-696=11481, a(4)=1681*4^2-984*4-696=22264 and 11481+11482+...+17712=17713+...+22263
MATHEMATICA
CoefficientList[Series[(1+4057*x-696*x^2)/(1-x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 09 2012 *)
LinearRecurrence[{3, -3, 1}, {1, 4060, 11481}, 40] (* Harvey P. Dale, Oct 28 2016 *)
PROG
(Magma) [1681*n^2 - 984*n - 696: n in [1..40]]; // Vincenzo Librandi, Jul 09 2012
(PARI) a(n)=1681*n^2-984*n-696 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A020430 A163010 A069332 * A146894 A013688 A221452
KEYWORD
nonn,easy,less
AUTHOR
Charlie Marion, Apr 26 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 13 2006
STATUS
approved