login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118063
Denominator of Sum_{i=1..n} 1/(t(i)^t(i)) where t(i) = i-th 3-almost prime.
1
16777216, 4458050224128, 1259085058409489202413568, 15738563230118615030169600000000000000000000, 46496637333593157266125580467610571799579852800000000000000000000
OFFSET
1,1
COMMENTS
3-almost prime analog of A076265. (Semiprime analog of A076265 is A118056.) Fractions are 1/16777216, 265721/4458050224128, 75047458863267833/1259085058409489202413568, 938093235790847912650094635296999121 / 15738563230118615030169600000000000000000000, 2771420766426289313598405374054613260285749630619149892803 / 46496637333593157266125580467610571799579852800000000000000000000.
FORMULA
a(n) = Denominator of Sum_{i=1..n} 1/(3almostprime(i)^3almostprime(i)).
a(n) = Denominator of Sum_{i=1..n} 1/(A014612(i)^A014612(i)).
a(n) = Denominator of Sum_{i=1..n} 1/A114967(n).
EXAMPLE
a(2) = 4458050224128 because (1/A014612(1)^A014612(1)) + (1/A014612(2)^A014612(2))= (1/(8^8)) + (1/(12^12)) = (1/16777216) + (1/8916100448256) = 265721/4458050224128.
MATHEMATICA
Accumulate[1/#^#&/@Select[Range[30], PrimeOmega[#]==3&]]//Denominator (* Harvey P. Dale, Apr 05 2020 *)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Vos Post, Apr 11 2006
STATUS
approved