Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:24
%S 1,4060,11481,22264,36409,53916,74785,99016,126609,157564,191881,
%T 229560,270601,315004,362769,413896,468385,526236,587449,652024,
%U 719961,791260,865921,943944,1025329,1110076,1198185,1289656,1384489,1482684,1584241
%N a(n) = 1681*n^2 - 984*n - 696.
%C In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+ (x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(4)=A001652(4)=696 and z(4)=A001653(4)=985; cf. A000290, A118057-A118059, A118061.
%H Vincenzo Librandi, <a href="/A118060/b118060.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+4057*x-696*x^2)/(1-x)^3. - _Colin Barker_, Jul 01 2012
%F a(n)+(a(n)+1)+...+(a(n)+1681n+1188) = (a(n)+1681n+1189)+ ... +a(n+1)-1; a(n+1)-1 = a(n)+3362n+696.
%F a(n)+(a(n)+1)+...+(a(n)+1681n+1188)=41(41n-12)(41n+29)(82n+17)/2; e.g., 11481+11482+...+17712=90965388=41*111*152*263/2.
%e a(3)=1681*3^2-984*3-696=11481, a(4)=1681*4^2-984*4-696=22264 and 11481+11482+...+17712=17713+...+22263
%t CoefficientList[Series[(1+4057*x-696*x^2)/(1-x)^3,{x,0,40}],x] (* _Vincenzo Librandi_, Jul 09 2012 *)
%t LinearRecurrence[{3,-3,1},{1,4060,11481},40] (* _Harvey P. Dale_, Oct 28 2016 *)
%o (Magma) [1681*n^2 - 984*n - 696: n in [1..40]]; // _Vincenzo Librandi_, Jul 09 2012
%o (PARI) a(n)=1681*n^2-984*n-696 \\ _Charles R Greathouse IV_, Jun 17 2017
%K nonn,easy,less
%O 1,2
%A _Charlie Marion_, Apr 26 2006
%E Corrected by _T. D. Noe_, Nov 13 2006