|
|
A117758
|
|
Number of primes between the successive central binomial coefficients; i.e., the number of primes in the interval (C(2n,n), C(2n+2,n+1)], with inclusion on the right.
|
|
1
|
|
|
1, 2, 5, 11, 35, 103, 323, 1052, 3469, 11726, 40234, 139955, 492505, 1750900, 6275491, 22662455, 82364564, 301058002, 1106006504, 4081585024, 15124027686, 56247438994, 209889216294, 785601467368, 2948682167318, 11096081791175, 41854378016484, 158221313955249
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 2 because the primes 3 and 5 lie in the interval (2,6].
|
|
MAPLE
|
a:=proc(n) local ct, j: ct:=0: for j from binomial(2*n, n)+1 to binomial(2*n+2, n+1) do if isprime(j)=true then ct:=ct+1 else fi: ct: od: end: seq(a(n), n=0..13); # execution takes hours; Emeric Deutsch, Apr 16 2006
|
|
MATHEMATICA
|
Do[Print[PrimePi[Binomial[2*n + 2, n + 1]] - PrimePi[Binomial[2*n, n]]], {n, 0, 25}] (* Ryan Propper, May 06 2006 *)
|
|
PROG
|
(PARI) { for(n=0, 30, istrt=binomial(2*n, n) ; iend=binomial(2*n+2, n+1) ; resul=0 ; forprime(p=istrt+1, iend, resul++ ; ) ; print1(resul, ", ") ; ) ; } \\ R. J. Mathar, Apr 21 2006
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|