login
A298122
a(n) is the number of n nonintersecting arches above the x-axis that start and/or end with an arch length equal to one and have floor((n+2)/2) arches starting in odd numbered positions.
0
1, 1, 2, 5, 11, 34, 90, 300, 875, 3038, 9408, 33516, 108108, 392040, 1302444, 4785066, 16256955, 60324550, 208579800, 780088452, 2735682092, 10296854984, 36532677272, 138231751840, 495241833996, 1882201158264, 6799413051200, 25939319270000, 94374970110000
OFFSET
1,3
FORMULA
a(1) = a(2) = 1, a(3) = 2; for n > 3, a(n) = 2*(C(n-1, floor((n-1)/2))*C(n-2, floor((n-2)/2)) - (C(n-1, floor((n-2)/2))*C(n-2, floor((n-3)/2)))) - (C(n-3, floor((n-1)/2))*C(n-2, floor((n-1)/2))/(floor((n-1)/2)+1)).
EXAMPLE
Example: For n = 4 the a(4) = 5 solutions are as follows. (The numbers under the arches represent arches starting in an odd-numbered position on the x-axis.)
/\ /\
//\\ /\ /\ //\\ /\
///\\\/\, //\\ /\ /\, /\//\\/\, /\///\\\, /\/\//\\.
1 3 7 1 5 7 1 3 7 1 3 5 1 3 5
CROSSREFS
Sequence in context: A080068 A226919 A307316 * A196690 A101834 A117758
KEYWORD
nonn
AUTHOR
Roger Ford, Jan 12 2018
STATUS
approved