OFFSET
1,2
COMMENTS
Numbers n such that (310*10^n + 41)/9 is prime.
Numbers n such that digit 3 followed by n >= 0 occurrences of digit 4 followed by digit 9 is prime.
Numbers corresponding to terms <= 511 are certified primes.
a(21) > 10^5. - Robert Price, Apr 04 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A102970(n) - 1.
EXAMPLE
3449 is prime, hence 2 is a term.
MATHEMATICA
Select[Range[0, 10000], PrimeQ[(310*10^# + 41)/9] &] (* Robert Price, Apr 04 2015 *)
PROG
(PARI) a=39; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-41)
(PARI) for(n=0, 1500, if(isprime((310*10^n+41)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(20) derived from A102970 by Robert Price, Apr 04 2015
STATUS
approved