Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 14 2024 08:47:09
%S 1,2,5,11,35,103,323,1052,3469,11726,40234,139955,492505,1750900,
%T 6275491,22662455,82364564,301058002,1106006504,4081585024,
%U 15124027686,56247438994,209889216294,785601467368,2948682167318,11096081791175,41854378016484,158221313955249
%N Number of primes between the successive central binomial coefficients; i.e., the number of primes in the interval (C(2n,n), C(2n+2,n+1)], with inclusion on the right.
%H Amiram Eldar, <a href="/A117758/b117758.txt">Table of n, a(n) for n = 0..39</a>
%e a(1) = 2 because the primes 3 and 5 lie in the interval (2,6].
%p a:=proc(n) local ct,j: ct:=0: for j from binomial(2*n,n)+1 to binomial(2*n+2,n+1) do if isprime(j)=true then ct:=ct+1 else fi: ct: od: end: seq(a(n),n=0..13); # execution takes hours; _Emeric Deutsch_, Apr 16 2006
%t Do[Print[PrimePi[Binomial[2*n + 2, n + 1]] - PrimePi[Binomial[2*n, n]]], {n, 0, 25}] (* _Ryan Propper_, May 06 2006 *)
%o (PARI) { for(n=0,30, istrt=binomial(2*n,n) ; iend=binomial(2*n+2,n+1) ; resul=0 ; forprime(p=istrt+1,iend, resul++ ; ) ; print1(resul,",") ; ) ; } \\ _R. J. Mathar_, Apr 21 2006
%Y Cf. A000984, A036378.
%K nonn
%O 0,2
%A _Greg Huber_, Apr 14 2006
%E More terms from _Emeric Deutsch_ and _R. J. Mathar_, Apr 16 2006
%E More terms from _Ryan Propper_, May 06 2006
%E a(25)-a(27) from _Amiram Eldar_, Jun 14 2024