login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116906
Sum of squares of divisors of n!.
1
1, 1, 5, 50, 850, 22100, 806806, 40340300, 2584263500, 209609328500, 20993420690550, 2561197324247100, 368819285671473000, 62699278564150410000, 12294076739210974071000, 2766341857504878226501200
OFFSET
0,3
COMMENTS
See also A062569 sigma_1(n!).
LINKS
Jean-Marie De Koninck and William Verreault, Arithmetic functions at factorial arguments, Publications de l'Institut Mathematique, Vol. 115, No. 129 (2024), pp. 45-76.
FORMULA
a(n) = A001157(A000142(n)).
a(n) = Sum_{d|n!} d^2.
a(n) = sigma_2(n!).
a(n) = zeta(2) * n!^2 * (1 + O(log(n)/n)) (De Koninck and Verreault, 2024. p. 54, Theorem 4.5). - Amiram Eldar, Dec 10 2024
EXAMPLE
a(0) = 1 because only 1 divides 0! = 1.
a(1) = 1 because only 1 divides 1! = 1.
a(2) = 5 because both 1 and 2 divide 2! = 2 and 1^2 + 2^2 = 5.
a(3) = 50 because 1, 2, 3, 6 divide 3! = 6 and 1^2 + 2^2 + 3^2 + 6^2 = 50.
a(4) = 850 because 1, 2, 3, 4, 6, 8, 12, 24 divide 4! = 24 and 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 8^2 + 12^2 + 24^2 = 850.
MATHEMATICA
a[n_] := DivisorSigma[2, n!]; Array[a, 16, 0] (* Amiram Eldar, Aug 01 2019 *)
PROG
(Sage) [sigma(factorial(n), 2)for n in range(0, 16)] # Zerinvary Lajos, Jun 13 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 15 2006
STATUS
approved