login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354685
a(n) = n! * Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * H(k), where H(k) is the k-th harmonic number.
2
0, 1, 5, 50, 854, 22354, 833244, 41974176, 2748169584, 226916044848, 23069499189120, 2831994888419520, 413051278946186880, 70608112721914654080, 13982696139441640584960, 3175762393024883382067200, 820007850688478572529203200, 238863690100874514528150681600
OFFSET
0,3
LINKS
FORMULA
Sum_{n>=0} a(n) * x^n / n!^2 = Sum_{n>=1} H(n) * (-log(1-x))^n / n!.
a(n) ~ n!^2 * (log(log(n)) + gamma + 1/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 03 2022
MATHEMATICA
Table[n! Sum[(-1)^(n - k) StirlingS1[n, k] HarmonicNumber[k], {k, 1, n}], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Sum[HarmonicNumber[k] (-Log[1 - x])^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 03 2022
STATUS
approved