

A116904


Number of nstep selfavoiding walks on the upper 4 octants grid starting at origin.


11



1, 5, 21, 93, 409, 1853, 8333, 37965, 172265, 787557, 3593465, 16477845, 75481105, 346960613, 1593924045, 7341070889, 33798930541, 155915787353, 719101961769, 3321659652529, 15341586477457
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

GuttmannTorrie simple cubic lattice series coefficients c_n^{2}(Pi).  N. J. A. Sloane, Jul 06 2015


LINKS

Table of n, a(n) for n=0..20.
M. N. Barber et al., Some tests of scaling theory for a selfavoiding walk attached to a surface, 1978 J. Phys. A: Math. Gen. 11 1833. [Vladeta Jovovic, Nov 26 2008]
T. Dachraoui et al., Elementary paths in a cubic lattice and application to molecular biology, Kybernetes, Vol. 26 No. 9, pp. 10121030. [Vladeta Jovovic, Nov 26 2008]
A. J. Guttmann and G. M. Torrie, Critical behavior at an edge for the SAW and Ising model, J. Phys. A 17 (1984), 35393552.


EXAMPLE

See A116903 for a graphical example of the bidimensional counterpart.


CROSSREFS

Cf. A001412, A039648, A116903.
Sequence in context: A218964 A154964 A007287 * A126952 A273570 A103519
Adjacent sequences: A116901 A116902 A116903 * A116905 A116906 A116907


KEYWORD

nonn,more


AUTHOR

Giovanni Resta, Feb 15 2006


EXTENSIONS

a(16)a(20) from Scott R. Shannon, Aug 12 2020


STATUS

approved



